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AlJstract-A procedure for deriving mixed variational principles for nonlinear shell analysis was
presented in Part I and formulated in more detail for shells of weak curvatures and for circular
cylindrical shells. The cylindrical shell principle is extended here to accommodate those special cases
in which the retention of mixed terms in the compatibility equations is of significance. Emphasis is
put on the interaction of longitudinal extensional strains with large circumferential changes of
curvature. As a simple first example, it is applied to the orthotropic Brazier process, for which an
Euler-Lagrange equation and perturbation solution are also derived. Variational principles have
important uses for providing direct, approximate "engineering solutions" to highly nonlinear
problems. Such solutions complement the more exact but cumbersome finite element or double
series techniques. In the present case, reasonable simplifying assumptions are introduced in the
extended principle to construct approximate principles and equations for the problem of strong,
nonlinear, nonuniform bending of finite-length orthotropic tubes. As a specific example, the pure
bending of a clamped, finite-length tube is studied. Approximate analysis is carried to collapse (or
local buckling). Some of the local buckling results are compared with numerical results from the
literature.

I. THE EXTENDED VARIATIONAL PRINCIPLE

The need for modifying the variational functional arises in problems involving highly
deformed shells with strong directional effects in which the largest curvature changes are
of the order O(1IR), while the smallest are of the order O(sIR). In the case of nonlinear
bending of relatively long cylindrical shells, the nondimensional circumferential curvature
change ak.. might be 0(1) while the longitudinal curvature changes akxx are of the order
of the middle-surface extensional strains exx caused by the bending. Small mid-surface
extensional strains are assumed, so that any power of these strains of order greater than
unity is suppressed.

The reference configuration is a circular cylindrical shell of radius a, wall thickness t,
length Land centroidal area moment of inertia 1= na3t, The coordinates on the middle
surface are x along the generator and s = (Ja on the middle surface in the circumferential
direction. These are also Lagrangian (material) coordinates on the deformed middle surface.
All tensorial operations refer to the undeformed metric, which is Cartesian (axx = ass = I,
axs = 0). The Codazzi compatibility equations, with the relevant mixed terms retained, are

kss,x - k xs•s - G) ess,x = 0

kxx,s - kxs,x - G+k ss ) l = 0,
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(1 a)

(Ib)
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where A = exx.s-Yxs,x is the geodesic curvature of the deformed generators. Obviously, the
term kssess not shown in eqn (1a) is O{e) compared to kss and has been neglected. However,
if akxx is O{e) and akss is 0(1), then the mixed term kssA in eqn (lb) is of the same order as
kxx.s and should not be suppressed. It is this special situation which requires the modification
of the variational functional.

The curvature function is introduced by kxs = t/J,xs; see also eqn (l3b) in Part I.
Dropping nonlinear extensional strain terms, the Codazzi and Gauss compatibility equa­
tions become

{kxx -t/J,xx},. = G+t/J,ss) A

G+ t/J.ss) kxx +A,s +ess.xx - t/J,~s = o.

Now new variables il and f s are defined by

such that for any function F,

Upon change of variables, eqns (2b, c) can be reduced to

A = {kxx-t/J,xx),1J (Codazzi)

A,/JIJ +A- [is (t/J,~s -ess•xx ) -t/J,xx],1J = 0 (Gauss).

(2a)

(2b)

(2c)

(3a)

(3b)

It is noted that for small deformations, il is the deformed circumferential angular slope and
il,s is the deformed circumferential curvature.

Using the modified Gauss equation, one can express the enhanced variational lIz [part
I, eqn (l7)] as

lIz (e~p, t/J,f) = ff {u -IO:s {A.IJIJ+A- [i,s (t/J.~s -ess,xx) -t/J,xx],lJ}} dA +P. (4)
A

The use of (o:" f) as multiplier is for convenience only. To eliminate e~p from the functional,
the coefficients of be~p in blI z are set equal to zero with the following results:

au I ss f.~ =n = - ,lJxx'
uess '"

(5a)

(5b)

(5c)

For more details on the constitutive relations, see Section 2.2 of Part I. In general, n~P =
n~P{f, t/J). Proceeding as in Part I, e~p{f, t/J) are introduced into lIz and partial integra­
tion is performed, to arrive at the mixed potential II*{f, t/J) as follows:
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n* = ff[ u:+ ~fqxxt/!-h;"'YeP6(fq)".pt/!,yt/!'1i] dA+P*,
A
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(6)

where, for simplicity,p'" = 0 was taken. The remarks ofPart I on the II* principle regarding
the admissible fields and p* also apply here. In particular, p* = 0 for cases in which the
only nonhomogeneous quantities are applied force resultants on oLn • This includes the
common case of applied beam-type axial bending moments and shear forces on the ends
of a tube. The Euler-Lagrange equations and associated boundary conditions are not
affected by the extended formulation. The main effect is on the relations n"'P(f, t/!) and
k",p(f, t/!), which are now more complicated.

In problems involving a large ratio of "differentiation lengths" (p = LxlLs » 1), the
ess,xx and t/!~ terms can be neglected in n 2, thus leading to a simplified form for n*:

n* = ff(u:+fxxst/!) dA+P*.
A

(7)

The nonlinearities in n* are contained in U;: through the expressions for n"'P and kxx. Since
e ss is small, it is also removed from the energy and from kss • Some of the local edge effects
at the ends of the tube (where f.l is small) are lost. The decision on whether to use eqn (6)
or eqn (7) depends on the problem at hand.

The simplification in eqn (7) is related to the "semi-membrane" approximation. For
further details on this approximation and its uses in cylindrical shell theory, see Calladine
(1983) and Axelrad (1985a), where more references are given.

2. NONLINEAR BENDING OF CIRCULAR CYLINDRICAL TUBES

2.1. Pure bending ofinfinitely long tubes
Brazier (1927) analyzed the deformation and collapse of an isotropic tube using small

deformation theory. Hayashi (1949) extended the results to orthotropic tubes. Many studies
have been made since then and stronger nonlinearities introduced. In this section, the mixed
variational principle is applied to a strongly nonlinear formulation of the problem in terms
of either direct methods or an Euler-Lagrange equation. Although the main purpose of
this section is to demonstrate the use of the principle, some of the results will be useful for
the nonuniform case.

Since all quantities are now independent of axial coordinate x, eqns (3a, b) can be
reduced to

kxx.IJ = A. (A. = exx.s )

A..IJIJ +A. = 0, (8)

with solution

A. = "coslJ+"t sinlJ

kxx = "sinlJ-"t cos1J. (9)

The constants" and" t are associated with the imposed bending. For bending in the xy­
plane, "t = O. Let Ybe the deformed y-coordinate of a material point. Then

cos1J ~ Y.s

exx = "y+c. (10)

Here, c is associated with axial loads and is zero for pure bending. Thus, the satisfaction

SAS 31:7-1
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of the compatibility equations is equivalent to the requirement that exx be proportional to
y. The latter can be deduced directly from considerations ofsymmetry, so that this implicitly
validates the solution scheme.

The effects of e•• in tube bending problems are small (compared with those of exx and
kss ) and it is usually neglected in tube bending analysis. Also, since I(;xx = O«lja)exx), its
effects on the strain energy are small compared with the corresponding extensional energy
terms due to ew and it can be omitted there. The constitutive relations can be used to
express nXX in terms of exx • Up to this point no assumption has been made regarding these
relations, but at this point a linear orthotropic material is assumed, so that

(11)

where Ex is the extensional modulus in the x-direction. The equilibrium requirement M =
§~Xyds leads to

Mt
nXX --y- I '

M
1(;=-_

Ex!'
(12)

Note that these are, in essence, beam-type formulas, with I(; being the "tube-beam" curva­
ture. Also, I is the moment of inertia of the deformed cross-section and Ds is the cir­
cumferential bending rigidity. With the above in mind, the mixed energy becomes:

(13)

IfExt varies (symmetrically) with s, then Ex!should be replaced by §Exty2 ds. To determine

1, first y is obtained from'" by

y= f: cos (0 +"',s)a dO (0=8ja). (14)

For use in direct methods, '" is expressed in a series form, such as'" = -aI:~r"cos2nO.
Also,!and y are calculated from eqns (12) and (14) and r; are obtained from all* jari = O.
The leading term (N = 1) is dominant and is exact for small deformations, as was shown
by Brazier (1927) and others. Calladine (1983) used it for moderate rotation analysis. For
N = 1, the expression for I is

(15)

The use of the first two terms only yields Brazier's classical result.
A second approach is to obtain from bIl* = 0, an exact Euler-Lagrange equation for

the problem. From eqn (14),

.1. - y,ss
'I',ss = + (1-Y.D 112 a (16)

Introducing the above result into bIl* = §[(Dsj2)b("'~ss) + (Ex tI(;2j2)yby] ds = 0, performing

the modified integrations by parts, and setting equal to zero the multiplicand of by, one
obtains

(17)

Solutions Y(O, 1(;2) are subject to conditions of periodicity. They can be used to calculate
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1(K2) and M =Ex K1(K2
). The first maximum ofthe latter is the collapse moment. It is noted

that both D. and Ex may vary with s.
For K = 0, eqn (17) is satisfied by the undeformed shape ji = y = a sin 8. To obtain a

perturbation series solution for ji about K = 0 (with perturbation parameter tt), one sets

(18)

where

These expressions are introduced into eqns (16) and (17). Solutions for Vm and I/Im are
obtained by standard procedures. The process involves quadratures only. Results for the
first and second perturbations are:

1/1 I ... = (3/a) cos 28

1 ~1/12$$ = - (2eas 20+ 4cos40).. a

These can be substituted into 1to obtain the M(K) response to the second order in N. The
first perturbation is identical to the classical solution. The m = 2 terms involve additional
trigonometric functions, but the deformation remains symmetric. Even though higher
order terms were not calculated, it appears that "for all practical purposes" the nonlinear
deformation may be taken to be symmetric. This does not hold near collapse or buckling,
but in those cases the emerging axial nonuniformity renders the present equations invalid.

An alternative formulation involving two nonlinear differential equations in terms of
a stress function and the rotation was obtained by Reissner (1961). It was solved by Reissner
and Weinitschke (1963) using perturbation and integral equation techniques. The analysis,
which was confined to the homogeneous isotropic case, provides firm support for the Brazier
approximation.

2.2. Nonlinear nonuniform bending offinite-length tubes
Let AB = K(X) cos l} be the symmetric solution of the equation A.t1t1+ A= 0, where now

K depends on x (in the above, B stands for "beam"). Also, let A. (8 stands for "shell") be
a solution of the complete compatibility equation. Then, (AB+ As) is also a solution of the
complete compatibility equation. This implies that ABcan be separatedout from the equation.
A similar conclusion is reached by noting that in tube bending problems, F,x « F,. for any
shell quantity. If a scaling is introduced by , = J1.X, such that F,,, = O(F,... F), then J1.2 « 1.
Hence, the compatibility equation can be cast in the form

A.s.t1t1+AB = 0

As.t1t1+AS+(I/I.l;l;s+· ••) =0,

(19)

(20)

which implies that As is also the first order solution of the compatibility equation, and As
is the solution of the second order complete equation. Note that A.B provides the major
nonlinear response to bending away from the edges, but As is needed for the boundary
conditions and second order corrections. In fact, it is reasonable to suppress the non­
linearities and replace If with (} for the As solution.

It would be useful if the Band 8 systems were partitioned in the strain energy too, so
that mixed terms would vanish in JJUdA. This occurs, of course, in linear theory but also
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in several nonlinear applications. Tube bending is included in this categoryt since the
bending strains of the B system are odd in 0, while the cross-sectional distortion t/J and its
S system are even in O. In this case, the stresses of the S system do not contribute to overall
equilibrium. The external moments and shear forces are carried entirely by the B system,
which can be treated separately.

Integration of AD results in

(21)

where c{x) = 0 for bending with symmetrical distortion. IfnXS and I'xs are proportional to
the external shearing force Q, then for edge loaded beams, I'xSB,x = O. In the more general
case of variable shear forces (which should include the case of distributed loading), the
equation

(22)

holds for orthotropic materials (equilibrium equations were used for its derivation). Hence

(23)

The last term is small compared with the others and can usually be neglected. Considerations
of equilibrium yield, as in the uniform bending case,

(24)

where

S = at [/I y dO.
J"/2

The neutral surface is chosen such that §y ds = O. For symmetrical distortions it does not

shift. The normal curvature is given by kxx = K{X) sin '8. Noting that the geodesic curvature
is AD = K{X) cos 9, it follows that these are components of the curvature K{X) of the tube as
a beam. The rotation ofcross-sections Pis such that K{X) = P.x. The complementary energy
of the B system is

(25)

where

R = fS'2 dsjtJ2.

t See Section 2.1 for details on the preservation ofsymmetry in the nonlinear range.
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It follows that the B system describes the behavior of the tube as a beam, with beam
properties related to the deformed configuration. The latter, however, is not yet known since
the distortion t/J can be obtained only from the full solution, which includes the S system.

2.3. Approximate analysis
In order to simplify the problem, approximations are made (some ofthese were already

discussed before and will be repeated here for completeness).

(1) The semi-membrane approximation is adopted. Thus, the effects of ess are
suppressed. Also, the terms with kxx and k xs are deleted from the strain energy. The more
restrictive assumptions of "flexible shell theory" and thin-walled beam theory (Vlasov,
1961; Gjelsvik, 1981), which also neglect the shear strain Yxso are not made at this stage.
The present work goes along with more recent approaches which retain the shear strain
effects. See Axelrad (1985a) for more details.

(2) Nonlinear terms are suppressed in the S system. Thus, {} is replaced by 0 and the
t/J~xs term is dropped.

(3) Symmetry of the cross-sectional distortion will be assumed, thus facilitating the
partitioning of the Band S systems. This is exact in the case of small deformations, as
shown by Brazier (1927), and is the dominant feature even in strong nonlinearities, as long
as buckling or collapse do not take place. See Section 2.1 for details.

(4) Moments M and shear forces Q may be applied to the tube boundaries x = 0, L.
Otherwise, the boundary conditions are homogeneous. Distributed external loading (if
applied) may affect the moment and shear distribution but its local effect (as surface loads)
is ignored.

(5) The material is linear orthotropic with axes of symmetry in the x, s-directions.
Here D" Ex and G are the circumferential bending rigidity, extensional and shear moduli,
respectively.

With these approximations and assumptions, II* becomes

(26)

with

k ss = t/J.ss; anXX = - (/'88 +f).s; anXS = (/,oo +f) oX'

All the quantities in the surface integral are those of the S system, but the subscript s is
omitted for simplicity. If the shear strains are neglected, then the terms with G are dropped.
The field variables are t/J, f and any indeterminacy parameters Ki which may be contained
in M and Q (such as a fixed-end moment in a statically indeterminate beam-tube). The
nonlinearity is contained in the dependence of I and R on ji (and, through it, on t/J).
Admissible f must satisfy any boundary conditions on oLn • The suppression of kxx and kX8

in U;:: precludes the assignment of boundary conditions related to shell rotations or normal
displacements on the boundary.

A reasonable solution procedure would be to represent the variables as trigonometric
series in 0 with x-dependent coefficients,

t/J= -aIrm(x) cosmO, f=aIfm(x)sinmO (m = 2,4,'''), (27)

and use the Rayleigh-Ritz process to either obtain an approximate solution by direct means
or obtain a system of ordinary differential equations. The problem can, however, be greatly
simplified by taking only the leading terms
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'" = - ar2 (x) COS 28, f = a2f2 (x) sin 28 (28)

as approximations in the Rayleigh-Ritz sense, and use a variational technique to obtain the
relevant equations. Brazier (1927) showed that this is exact for small deformations and
pure bending of long shells. It has been shown to be (approximately) valid well into the
nonlinear range. For further discussion, see Reissner and Weinitschke (1963), Antonenko
(1981), Calladine (1983), Axelrad (l985a) and others. Substitution into II* and denoting
£' = dF/dx, yield:

(29)

The equation 15II* = 0 yields, after integration by parts:

i
L {[16nDs 3 /I M2 0 T\ Q2 0 -]--r2-2na f2---(ljI)----(R) 15r2
o a 2Ex or2 2G or2

Equating to zero the coefficients of 15r2and 15f2 in the integrand and on oL provides the
equations and boundary conditions for the problem:

(L (M oM QR oQ)Jo ExT oK; + G oK; dx = 0 (i = 1. .. n)

(-~~: +2r;)"/, ~ o} on oL.
r 215f2=O

along L (31)

(32)

For the special case in which shear deformation is suppressed, the result is

(33)

Boundary conditions: The mth Fourier coefficients of the normal and shearing stress
resultants are expressed in terms of the stress function by
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~1l.--_Yl__Y x.~ =~~0
J----L/2 --4--- L/2 ---II

Fig. 1. Clamped tube subjected to a pure couple.
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(34)

Also, the Gauss equation (with ess = 0) and stress-displacement relations of linear shell
theory yield for the displacements vx and vs :

(m> I). (35)

A comparison with the derived conditions above shows that while of and of' represent the
variations in nXX and nXs

, respectively, their coefficients represent the intrinsic equivalents of
the corresponding displacements. See discussion in the sections on general theory. The
variational equation requires that either the stress resultant be specified (oLn condition) or
else the corresponding displacement be zero (homogeneous condition on oL.). The use of
Vs and Vx is sufficient for small displacements, but the intrinsic equivalents retain their
validity as boundary conditions even in the presence oflarger displacements. For example,
the specification of r determines the shape of the boundary curve (through kss), even for
large deformations.

As noted before, semi-membrane theory does not have provisions for the specification
of shell moments, transverse shears and their kinematical complements. This is a conse­
quence of the suppression of the kxxo kxs and ess quantities in the energy. Edge effect
corrections can be made at a later stage.

As a specific example, the case of an orthotropic tube of finite length subjected to a
pure couple and attached to rigid rings at its boundaries, x = 0, L, will be studied.

3. EXAMPLE: ORTHOTROPIC TUBE CLAMPED TO RIGID RINGS AT ITS ENDS AND
SUBJECfED TO PURE BEAM BENDING

An orthotropic tube of length L is attached to rigid rings or bulkheads at its ends
x = ±L/2, through which a couple M is applied. The effects of shear deformation are
neglected (Yxs = 0); see Figs 1 and 2.

The differential equation is cast in a nondimensional form by taking

(36)

The problem is symmetric with respect to its midsection' = 0, so that the region 0 :!i.; , :!i.; 1
will be investigated. With these substitutions, the functional, differential equation and
boundary conditions reduce, after elimination of f, to:
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-*"'-+-----..x..;~.10.-....r...___H_+-z

Fig. 2. The ovalization of a circular tube.

n* = f [r2 + 4~4 rI, - 2q(Iji) ] d'

I a
r + 4fJ4 r.m, = q ar (I/l)

r = r' = 0 at , = I

r is symmetric with respect to , = o. (37)

Note that the subscript 2 was omitted for simplicity, so that r == r 2' In the above, 1/1 is
approximated to a degree consistent with the requirements. In particular, 1/1:;;;; (I - 2r) - I
(Brazier) or 1/1:;;;; I +2r + ~r2+ ... (quadratic polynomial) may be used for this problem.
The Brazier approximation will be used for the strongly nonlinear case, and the quadratic
approximation for weaker nonlinearities which do not involve collapse analysis.

Based on the geometry or loading intensity, five distinct cases merit separate treatments.

(I) Long shells (fJ4» 1), away from the edges. This is the classical case. The defor­
mation amplitude roo (q) is a solution of the equation

ar = q-(I/l)
ar

(38)

and analysis can be carried to collapse. Taking, for example, the Brazier approximation for
(I/l), Brazier's classic equilibrium path results:

(39)

A plot of (iiB) 1/2 vs r is shown in Fig. 3 (marked with +).
For the case oforthotropic material, the above equation can be reduced to the following

explicit expression for moment:

M = 4na(Ex Ds t) 112(1_2r)r I12 .

This expression agrees with the result of Kedward (1978).

(40)
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g
..... 0.1
~

A. IC Clamped tube <lie)
B. + Lonlltube <Cia)

C. 0 Simply-supported tube <Cis)

o 0.1 0.2

Fig. 3. MomenHlefonnation curves Jq-r0 for several cases.

(2) Medium-length, lightly loaded shells [JJ = 0(1)]. Since collapse analysis is not
intended, the quadratic approximation for IIImay be used. Heret

(41)

This is a linear equation of the "beam on elastic foundation" type. Its solution consists of
a homogeneous part f H which contains mixed hyperbolic-trigonometric functions, and a
particular solution f p which is a constant. To improve accuracy, f p = f 00 can be taken.
For the boundary and symmetry conditions at hand, the result is:

r = {1-2(sinh2p+sin 2j1) -I [(cosh psin P+sinh pcos j1) cosh PC cos Pc

+ (cosh P sin P- sinh P cos j1) sinh PC sin PC]} f 00' (42)

where

(fl)4 = (I-V q)P4.

The effects of the finite length of the shell are contained entirely in p. Although eqn (42) is
valid for all P, it is best used for 0.5 < P < 3. For larger P, the solution merges into an edge

t To be consistent with the Brazier approximation, replace 44/9 with 4.
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A. General case [eqn (40»

B. Membrane approximation [eqn (44)]

0.1

Fig. 4. Clamped tube: amplitude ratio at midspan (weak nonlinearity).

effect response (case 3) and for smaller 1J the membrane response (case 4) dominates; see
also Fig. 4.

(3) Long shells-edge effects. Edge effects in a long shell decay into the interior, where
the classical solution dominates. The quadratic approximation is used, which makes it a
special case of (2). Here, x (measured from the edge!) is used as a variable. The solution
is

r = [I e-llX(cosJlX+sinjlx)]r00' (43)

where jl = 21JIL is a decay parameter, which increases with q.
(4) Short shells (P4« 1). Here, the first term in the equation may be neglected.

Since this term represents the shell bending effects, this results in the nonlinear membrane
formulation for the tube problem (note that only geometric nonlinearity is considered) :

4 iJ 1)r.m, = 4P q iJr (II . (44)

For short shells, the deformation amplitude is small up to buckling, and the linear terms
in the expansion of III are sufficient, yielding

(45)

The solution which satisfies the conditions at , = 0, 1 is

(46)

Good results are obtained for P< 0.5. In these short shells, the main resistance to ovalization
is due to membrane resultants nXX and nXS stemming from the supporting rings. This solution
also provides a simple and convenient "shape function" for the large deformation and
collapse analysis of medium-length shells, using Rayleigh-Ritz procedures (see next case).

The solution ofcase (2) degenerates into the short-shell solution as Pbecomes smaller.
(5) High-intensity loading, large deformations, and collapse of medium-length shells.

Here the quadratic approximation for III is insufficient and the denominator form is
retained. The Brazier form, (1-2[') I, is adequate, since it has been shown to yield good
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results for large deformations. See Reissner and Weinitschke (1963). A one-term Rayleigh
procedure is employed for the approximate solution of the variational equation bn* = 0,
with the "shape function" taken from the weakly nonlinear solution. This is a common
procedure used in many branches of applied science for obtaining approximate solutions to
difficult, highly nonlinear problems. It is reasonable in stable problems in which the shape is
well chosen and is approximately preserved in the nonlinear range, as is the c~se here.

Let g«() be an assumed shape function which satisfies all of the boundary conditions,
such that r = r og(O. The parameter to be varied is r 0 but 9 may also contain other
parameters (such as 13 and q). Let

(47)

be the ratio of extensional to bending energies for the assumed r. Then, the equation
bn* = 0 reduces to

(48)

With [/1 = 1-2r, r = r og and tl defined by tl = (I +'O-Iq, this yields

(49)

Since the applied bending moment is proportional to ql/2, the function ql/2 = f(r 0,13)
describes the moment-deformation response up to collapse or buckling (which precedes
collapse-see subsequent note).

The best suited choice for 9 is that of eqn (42), which is valid for all 13. It is, however,
rather elaborate, and simplifications are welcome where appropriate.

For short- to medium-length shells (say 13 < 0.8), the short-shell form 9 = (1- (2) 2
can be used. [A similar choice made by Libai and Bert (1991) for the simply supported case
gave results which deviated only slightly from those of the more general choice.] Here,
'1 = (63/8)13- 4. Denoting by tlc(r0) the form of eqn (49) for this case, one obtains the plot
given in Fig. 3 (marked with symbol X) as curve A. Also shown (marked with circles) is
tls(ro) for the simply supported case, obtained by Libai and Bert (1991), and with
'113 4 = 1.52. It appears that tls (r0) is virtually identical to tlc (r0)'

For medium-length to long shells (say, 13 > 3), the choice is influenced by the realization
that the mechanism ofhighly nonlinear response and collapse far from the edges of a longer
tube is local and circumferential in nature. It is influenced only slightly by variations in the
x-direction. Furthermore, eqn (48) bears a formal resemblance to that of infinitely long
shells, eqn (38). Hence, for this case, it makes sense to choose the long-shell response,
g(O == I, which yields the Brazier curve tlB(rO)' On the other hand, the membrane con­
tribution is an integral effect which stems from the supports, so that the energy ratio of the
shorter shells is still adequate. It is noted that the maximum of tl~/2 is 0.187 at r 0 = 0.198.
This is 2.6% lower than Brazier's collapse value of (tlB);';;x = 0.192, but the slight difference
is more than offset by the effects of 13. The fact that the short-shell curve slightly "under­
estimates" the long-shell response is not surprising in view of the different shape functions
involved and the complementary nature of the membrane terms in the variational principle.

For medium-length shells (0.8 ~ 13 ~ 3), the response is intermediate between tlB and
tlc. However, in view of the slight differences between the two, an interpolation should
provide adequate results. For better accuracy, eqn (42) can be used.

A note on buckling and collapse: it should be emphasized that bent tubes fail by local
buckling on their compressive sides before the classical Brazier collapse is achieved. In very
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Fig. S. Local buckling of a bent tube.

long shells subjected to pure bending, buckling is close enough to collapse to allow the
latter to be used as a substitute failure point. In shorter shells, buckling occurs significantly
below collapse, but the nonlinear analysis provides the necessary data for local buckling
analysis. See Axelrad (1985b) for more details. In very short shells, L/a of the order
0(1), bending nonlinearity barely develops before buckling occurs, and it does not have a
significant effect.

Results of local buckling analysis based on the present theory are compared with
nonlinear buckling results obtained by Stephens et af. (1975) using the STAGS computer
program. The emphasis is on shell length effects. Considering the approximations that went
into the present theory and the fact that the boundary conditions did not match exactly,
the comparison is very satisfactory and can be used as an implicit numerical check on the
theory; see Fig. 5.

4. SUMMARY AND REMARKS

A mixed variational principle for nonlinear shell problems was developed. It is based
on a "curvature function" t/J, and is therefore limited to those shells where t/J can be
obtained. For these cases, it can accommodate deformations where the strains are small
but the rotations are unrestricted in magnitude. More details were given for shells of weak
curvature and for cylindrical shells, and indications for obtaining t/J in some other cases
were included.

The development ofthe principle for the bending of finite-length orthotropic tubes was
given in more detail, and stronger nonlinearities were incorporated in the formulation.
Differential equations and boundary conditions were developed for an approximate engin­
eering approach to the problem, and the case of a clamped shell subjected to a pure couple
was solved. Some of the results compare favorably with numerical local buckling data from
the literature.

Further work is needed in this area. Some problem areas are:

(a) The extension to other shell geometries.
(b) Consideration of boundary conditions of more general types including closure

conditions in multiply-connected shells. See also Sanders (1970) and Valid (1976).
(c) Incorporation of surface loads. Can these be incorporated as particular solutions

of membrane equilibrium?
(d) Considerations of buckling and postbuckling phenomena. In this respect, the

reincorporation of the nonlinear strain gradient terms [second line in Danielson
(1970) or equivalent terms in other quoted literature] into the Gauss equation L 3

in Part I, eqns (2) and (17), should be considered. See also the remark in the
paragraph preceding Section 2.1 ofPart I. In fact, the proper introduction ofthese
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terms into eqn (3.15) of Danielson (1970) would render his system of eqns (3.15)­
(3.18) (or equivalent systems in the other quoted literature) variationally con­
sistent-in the sense that it would be derivable from a variational principle.

(e) Extensions to nonlinear dynamics.
(f) Consideration of other material systems such as anisotropic elastic materials and

elastoplastic materials.

In tube problems, in addition to the above, more solutions are needed, and stronger
nonlinearities need to be incorporated. In particular, in view of the scarcity of data in this
range of deformation, critical experiments and numerical comparisons are necessary.
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